Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 834-847, 2017.
Article in English | WPRIM | ID: wpr-756924

ABSTRACT

TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a "move upward" motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.


Subject(s)
Animals , Humans , Mice , Calcium , Metabolism , Cryoelectron Microscopy , Endocytosis , Endosomes , Metabolism , Gene Expression , HEK293 Cells , Hydrogen-Ion Concentration , Lysosomes , Metabolism , Models, Biological , Mucolipidoses , Genetics , Metabolism , Pathology , Nanostructures , Chemistry , Phosphatidylinositols , Metabolism , Transgenes , Transient Receptor Potential Channels , Chemistry , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL